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ABSTRACT

Maintenance work orders (MWOs) are an integral part of
the maintenance workflow. These documents allow techni-
cians to capture vital aspects of a maintenance job, including
observed symptoms, potential causes, and solutions imple-
mented. MWOs have often been disregarded during analysis
because of the unstructured nature of the text they contain.
However, research efforts have recently emerged that clean
MWOs for analysis. One such approach is a tagging method
which relies on experts classifying and annotating the words
used in the MWOs. This method greatly reduces the vol-
ume of words used in the MWOs and links words, including
misspellings, that have the same or similar meanings. How-
ever, one issue with this approach and with the practical us-
age of data-annotation tools on the shop-floor more generally
is the usage of only one expert annotator at a time. How do
we know that the classifications of a single annotator are cor-
rect, or if it is, for example, feasible to divide the tagging task
among multiple experts? This paper examines the agreement
behavior of multiple isolated experts classifying and annotat-
ing MWO data, and provides implications for implementing
this tagging technique in authentic contexts. The results de-
scribed here will help improve MWO classification leading to
more accurate analysis of MWOs for decision-making sup-
port.

1. INTRODUCTION

Maintenance Work Orders (MWOs) are one of the main
records of activities that occur during a maintenance event.
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MWOs often include data such as problems observed, correc-
tive actions taken, potential causes, necessary parts, and time
of machine breakdown. The information in these MWOs is
useful in maintenance decision making; for example, it can
be used in failure mode identification, problem spot iden-
tification, and calculating more accurate mean time to re-
pair (MTTR) and mean time between failure (MTBF) met-
rics, which can improve maintenance strategy and efficiency
(Sexton, Hodkiewicz, Brundage, & Smoker, 2018). How-
ever, the MWO data, in its raw form, is often too unstruc-
tured, informal, and filled with jargon for immediate anal-
ysis. To combat this issue, researchers have used Natu-
ral Language Processing (NLP) techniques to extract im-
portant information out of the natural language descriptions
within the MWOs. Examples of recent work in this area
include (Smoker, French, Liu, & Hodkiewicz, 2017; Sex-
ton, Brundage, Morris, & Hoffman, 2017; Brundage, Mor-
ris, Sexton, Moccozet, & Hoffman, 2018; Sexton et al., 2018;
Brundage, Kulvatunyou, Ademujimi, & Rakshith, 2017).

One promising area in this space involves “tagging” the
MWOs, by assigning “tags” to concepts of importance in the
maintenance domain (Sexton et al., 2018). For example, a
MWO might contain the text “Replaced the hydraulic hose
and fixed the leaking valve.” The important concepts to a
maintenance practitioner might be the problem that was ob-
served, the items that were addressed, and the solutions that
were provided. In this example, the problem would consist
of “leak”, the items are “hydraulic hose” and “valve”, and
the solutions are “replaced” and “fixed”. Researchers at the
National Institute of Standards and Technology (NIST) have
created an open-source, free toolkit called Nestor1 to aid in

1https://github.com/usnistgov/nestor
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this tagging process by estimating the a priori importance
of concepts in the corpus, and helping annotators link to-
gether potential cases of domain-specific abbreviations, mis-
spellings, and synonyms. Once tagged, this data can then be
used to apply the previously-inaccessible knowledge stored
in the MWOs to improve the manufacturing process by, for
example, diagnosing and addressing problems faster (Sexton
et al., 2017).

The current research on this tagging approach to MWO analy-
sis focuses primarily on introducing the method and on issues
of the quality of the MWOs themselves, and has not yet exam-
ined more practical issues related to the deployment of the ap-
proach in authentic maintenance contexts. For example, this
research assumes that a single person will annotate a given
dataset through tagging. Indeed, it is likely the case that a sin-
gle person would be assigned this task in an authentic main-
tenance environment that uses this technique. However, this
assumption raises questions that need to be addressed. For
example, is a single isolated tagger reliable or experienced
enough to properly tag the dataset and produce data usable
for future analysis? In addition, it may not always be the case
during the use of a tagging tool that a single individual tags
the entire dataset. This tagger may have only limited time to
devote to the task, and so it may be necessary for additional
taggers to contribute their own work later. In this alternate
situation, can multiple taggers achieve sufficient agreement
with each other to produce usable data and warrant splitting
the task? Since the information gained from analyzing the
tagged MWO data will be used in important maintenance de-
cisions, it is crucial that these tags be accurate and reliable. In
the absence of a gold standard for tagging, it is necessary to
utilize an alternative validation method to answer these ques-
tions.

This paper seeks to address these issues by investigating
the agreement behavior of multiple isolated experts tagging
MWO data. We conducted an experiment in which six anno-
tators independently tagged a single dataset using the Nestor
toolkit. By having multiple people tag the data, agreement

on classifications of the different words in MWOs (e.g., “re-
place” is a solution) and the aliases assigned to them (e.g.,
“replace,” “replaced,” and “repalce” refer to the same con-
cept) could be measured to assess the level of consensus
reached and the viability of using a tagging approach to
analysing MWO data in practice. We found that the six anno-
tators achieved high levels of agreement, lending support to
the use of a tagging approach to clean MWO data for analy-
sis. We also identified several opportunities for improvement
of the approach; for example, performing the tagging task in
an environment that supports real-time feedback or collabo-
ration could further improve the level of consensus achieved.

1.1. Background on Crowdsourcing

These issues of agreement among multiple taggers are com-
mon in the domain of crowdsourcing, where complex jobs
are broken down into smaller, granular tasks and completed
individually by many people, whose work is aggregated to
create a final solution (Surowiecki, 2005). A common appli-
cation of crowdsourcing is generating labeled training data
to be used for machine learning algorithms, for example, la-
belling the contents of images (Nowak & Rüger, 2010) or the
emotion of speech assets (Tarasov, Delany, & Cullen, 2010).
Crowdsourcing has been shown to be an effective method for
generating high-quality labels cheaply and efficiently (Hsueh,
Melville, & Sindhwani, 2009; Snow, O’Connor, Jurafsky, &
Ng, 2008; Ambati, Vogel, & Carbonell, 2010).

The concept of inter-annotator agreement or reliability is cru-
cial to this line of work, as it can give researchers a clearer
idea of whether multiple annotations are needed for each
piece of data, whether non-expert annotators are capable of
providing reasonable labels, and similar knowledge (Nowak
& Rüger, 2010; Brew, Greene, & Cunningham, 2010). Some
common metrics of agreement used in this context are ac-
curacy (e.g., (Nowak & Rüger, 2010; McCreadie, Macdon-
ald, & Ounis, 2010)), the κ-statistic (Fleiss, 1971; Ran-
dolph, 2005), and correlation coefficients such as Kendall’s τ
(Kendall, 1938).

Figure 1. Taken from (Sexton et al., 2018), to illustrate the procedure used both in that work and in the case study presented
here, for tagging a MWO with Nestor. Tokens are extracted from the original MWOs, and annotators are tasked with mapping
each to an alias and a classification, which together form a “tag”.
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We ground our work in this body of prior literature and
present a study reporting the levels of agreement reached by
multiple experts tagging MWO data. We also provide insights
into how to best measure agreement in this context.

1.2. The Tagging Tool

As described in (Sexton et al., 2018), the Nestor toolkit, used
here to characterize machine-assisted tagging of MWOs, re-
quires input of existing data to be processed, along with an
assumed tag schema that represents the possible types of tag
classifications within the corpus of MWOs. Here we utilize
the toolkit default schema—namely, Item, Problem, and So-
lution tags, along with Unknown tags where some ambiguity
exists without more context.

The mapping task performed by an annotator within Nestor
thus consists of taking a list of extracted “tokens” — the
word-level strings of text that were estimated to be statisti-
cally important per the Nestor back-end — and giving them
an alias and a classification (see Figure 1). Importance
in this case is given by the tokens’ term-frequency/inverse-
document frequency (TF-IDF) score, a common NLP metric
(Leskovec, Rajaraman, & Ullman, 2014). Tokens are pre-
sented in decreasing order of importance to facilitate the effi-
ciency of the annotator’s task, and potentially related tokens
that likely share an alias are recommended by a fuzzy string
match. The final output is then a sort of “dictionary” that can
parse out useful tags from a large variety of more informal,
jargon-filled or misspelled text documents.

2. EXPERIMENTAL DESIGN

To investigate the agreement behavior of multiple users tag-
ging MWO data, we conducted a study with 6 expert anno-
tators from NIST and University of Western Australia. Us-
ing the “Research Mode” of the Nestor toolkit, participants
tagged MWO data from a publicly available dataset about ex-
cavation machinery, which is included with the tool2. Re-
search mode was used because it allows the tool to periodi-
cally and automatically save the classifications and aliases as-
signed so far, in order to provide insight into trends in agree-
ment over time.

Participant volunteers were to tag the dataset using the tool’s
“Single-word Analysis” section for approximately 30 min-
utes. This task length was chosen in order to allow partic-
ipants to tag a sufficient amount of data for analysis while
reducing the risk of performance loss due to fatigue. Prior
work has shown that factors such as vigilance decrement can
lead to reduced performance during long tasks after approxi-
mately 30 minutes, especially when the tasks require discrim-
ination based on a standard held in memory, as the tagging

2The dataset can be found at https://prognosticsdl.ecm.uwa.edu.au/pdl/ la-
beled ExcavatorBucketFailures. If using this data, please provide the proper
citation.

Figure 2. Participants’ annotations over time.

does (Mackworth et al., 1950; Parasuraman & Davies, 1976;
Parasuraman, 1979). The task was also limited to this length
in order to minimize intra-study training effects, which can
occur as participants become better at experimental tasks over
time. Due to the design of the tool, the highest rate of anno-
tation occurs at the beginning of the task (with the most im-
portant tokens) (Sexton et al., 2018), and so a large amount
of tagging can be completed while training effects are at their
lowest.

3. RESULTS

On average, participants each completed 265 annotations dur-
ing the allotted time, with a low of 175 and a high of 357.
Figure 2 shows participants’ progress over time. Interest-
ingly, although participants had been instructed to perform
the tagging task for 30 minutes, there was some variability in
the actual amount of time spent tagging. We also observed
differences in tagging rate between participants, as might be
expected.

3.1. Agreement Measure

To measure the level of agreement achieved by taggers we use
Fleiss’ Multi-rater Kappa statistic (κFleiss) (Fleiss, 1971).
κFleiss is given by

κf =
P̄ − P̄e

1 − P̄e
, (1)

where P̄ represents the proportion of overall observed agree-
ment, and P̄e represents the proportion of agreement between
raters expected by chance.

P̄ is given by

P̄ =
1

Nn(n− 1)
(

N∑
i=1

k∑
j=1

nij2 −Nn) , (2)
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and P̄e is given by

P̄e =

k∑
j=1

(
1

Nn

N∑
i=1

nij

)2

, (3)

whereN is the number of cases, n is the number of ratings per
case, and k is the number of rating categories. It is important
to note that when calculating κFleiss, not all raters need to
provide a rating for every case.

Fleiss suggests that values of κFleiss less than 0.4 indicate
low agreement, values between 0.4 and 0.7 indicate good
agreement, and values over 0.7 indicate excellent agreement,
although these conventions vary. Other research suggests that
only values of κFleiss above roughly 0.7 indicate good agree-
ment (Tarasov et al., 2010).

3.2. Alias Agreement

We first consider the raters’ agreement on the alias assigned
to each token. Participants achieved a κFleiss of 0.85, which
indicates a high level of agreement.

In addition to this analysis of the entire set of aliases pro-
duced, we also calculated the agreement on only the most
important tags. These aliases were those that were associated
with tokens the tool ranked in top 1 % in terms of statistical
importance (recall that the tool ranks tokens’ importance via
TF-IDF scores). For this set, κFleiss was 0.81, which also
indicates good agreement.

We further analyzed changes in the level of agreement over
time, as shown in the top section of Figure 3. The figure
shows these trends for both the full set of tokens and the
reduced set of important tokens. See the left side of Fig-
ure 4 for a visualization of the agreement levels for some
specific high-importance aliases and tokens. The values in
that matrix are the number of raters who assigned the given
alias/classification to the token (nij in Eqs. 2,3). Recall that
not all raters necessarily give a tag for every token.

In general, we see that agreement starts very high, when par-
ticipants have tagged only a few tokens, and decreases as time
goes on (although it remains high overall). This is likely due
to the fact that the tool presents tokens in decreasing order of
importance. Participants may be more likely to agree on how
to classify the earlier, more important words, than they are on
later words that occur more infrequently in the MWOs.

Another potential explanation for the dropoff in agreement is
synonym cases. As can be seen in Figure 4, disagreement
is most common in cases where different aliases have been
assigned to words with the same meaning (e.g., “hose” and
“line”). These pairs of words occur frequently in the data, es-
pecially in the important token set, which could help explain
the differences in patterns between the full set of tokens and
the reduced, popular set.

Figure 3. Agreement trends over time. Top: Alias agreement.
Middle: Classification agreement. Bottom: Time progression
of the task, showing participants still actively tagging.

Interestingly, we see in Figure 3 that agreement improves
(especially for the important tags) after the participants who
tagged for a shorter amount of time had finished. This trend
points to how individual differences in annotators can have an
impact on the tags assigned to tokens and the level of agree-
ment reached.

3.3. Classification Agreement

In addition to measuring agreement on the aliases assigned
to tokens, we also calculated κFleiss for the classification of
tokens into the concept categories used by Nestor. Inter-rater
agreement at 30 min for token classification was 0.66, which
indicates a good level of agreement, although lower than the
other values of κFleiss we measured.

As with the alias analysis, we additionally considered the par-
ticipants’ agreement on the classification of the most popular
tokens. Here, κFleiss was 0.72, which again indicates good
agreement. See the right side of Figure 4 for a visualization
of the classification agreement for a selection of the popular
tokens.

We also repeated the analysis of changes in agreement over
time. These results are shown in the middle section of Fig-
ure 3. Again, the figure shows these trends for both the full
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Figure 4. Matrix of rater agreement for a selection of high-
importance tags and their corresponding tokens.

set of tokens and the reduced set of important tokens. The
general trends are the same as described previously for the
alias analysis.

One notable observation about the classification results is that
the category which seemed to cause the most disagreement
was “Unknown.” We saw that many of the tokens had at least
one participant label them as “Unknown,” however these la-
bels did not achieve the same kind of consensus that those
given for the “Item” category did.

4. DISCUSSION

In this study, we examined the agreement behavior of mul-
tiple independent experts tagging MWO data for analysis.
We found that the annotators were able to achieve high lev-
els of agreement (κFleiss = 0.85 for alias assignment and
κFleiss = 0.66 for concept classification on the set of all
tags).

This finding has two main implications. First, since the
aliases and labels assigned by a single expert are similar to
those assigned by the entire group of experts, users of tools
like Nestor can be reasonably confident that a single user can
produce a set of valid tags that can be used in future analysis.
Second, in the case that a single user is not tagging the entire
dataset, users can again be reasonably confident that having
multiple taggers will not compromise the quality of the set of
tags produced.

However, our results also indicate a few opportunities to fur-
ther improve agreement and the quality of the tags produced.
We observed the following potential modes of disagreement:

1. Synonym token sets lead to split decisions among anno-
tators, depending on domain ambiguity See “hose” vs.
“line” in Fig. 4. Some prefer retain specificity, while
others tend to generalize.

2. Token shorthand, ambiguity, and abbreviation is likely
to be classified as “Unknown” by a subset of users.
This increases for tokens with many low-frequency vari-
ants, that not all users reach or understand (see “rh” in
Fig. 4).

3. Compound or multi-token aliases can hard to classify
consistently. For instance, some users retain “right
hand” as two distinct concepts put together, while oth-
ers chose “right hand” as a single conceptual modifier.

It is important to note the role that domain familiarity might
be playing in the occurrence of these observed disagreements.
As seen in Fig. 2, the speed of annotation, differs signifi-
cantly among annotators. Additionally, the agreement level
increased dramatically with the end of D and E annotators’
participation (Fig. 3). This must be kept in mind, as such
annotations performed in the field will likely come from an-
alysts needing to prepare data, but not necessarily having

5
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domain-specific expertise needed for high-agreement, reli-
able tagging.

In all of these modes, performing the tagging task in a collab-
orative environment that can offer real-time feedback, rather
than tagging individually, could help resolve disagreements.
For example, a user might be able to see how previous an-
notators tagged a token before finalizing their own decision,
which may lead to greater convergence. This is especially
true if the hypothesized familiarity differences are at play.

This concept of simultaneous groups of users arriving at a
shared vocabulary at the most relevant level of abstraction
for information retrieval is central to the idea of a folkson-
omy (Peters, 2009). These “folk”-taxonomies are built on the
idea that annotation should reflect the vocabulary of a user-
base (here, the technicians and operators storing information
for future retrieval in MWOs). Folksonomies allow for con-
vergence on a shared vocabulary in collaborative settings, and
can facilitate communication between users, which is an ideal
scenario for time-constrained practitioners on the shop-floor.

A limitation of this study is that we considered only one
method of measuring agreement. By using κFleiss we mea-
sured what could be called the “nominal agreement” between
tokens and tags; i.e., did the exact label assigned to this token
by Expert A match the exact label assigned by Expert B? An
alternative way of conceptualizing agreement, particularly for
aliases, would be to focus less on the exact alias assigned to
a token, but rather on the group of tokens assigned the same
alias, regardless of what that alias is.

One way to implement this more “topological” agreement
measure would be to frame the annotation process as a graph
and quantify disagreement using metrics like Graph Edit Dis-
tance (GED). Formulating crowd-sourced tagging efforts as
graphs has a long and rich history in the folksonomy liter-
ature, where ranking the quality of folksonometric annota-
tions through topology has been done with success previously
(Hotho, Jäschke, Schmitz, & Stumme, 2006).

For instance, we could view an annotation session as the con-
struction of two bi-partite graphs of the form G = (V,E),
where the vertex sets V can be split into two disjoint sets
(e.g. the token nodes and the alias nodes, or the alias nodes
and the classification nodes). The edgesE in a bipartite graph
only exist between sets; e.g. an “edge” between each of sev-
eral tokens and their representative tag means that the tag is
synonymous with all of its connected tokens.

In this way, such a bipartite graph would represent the anno-
tations made by a user in a session of the experiment. The
graph edit distances between each user’s annotations would
be high if the users disagreed on the the set of edges or the
size of each node-set. This allows more flexibility in user
annotation naming, valuing pattern similarity instead. Per-
haps more interestingly, these GEDs could be quickly disag-

gregated and updated in realtime, with user similarity scores
estimated over many time-steps for any of a number of lo-
cal subgraphs, just as e.g. Eksombatchai et al., 2018 do for
recommending pins/boards in the Pinterest “bipartite graph.”

5. CONCLUSIONS AND FUTURE WORK

In this work we presented a preliminary study examining
the agreement behavior of multiple isolated experts tagging
MWO data. The results of the study have implications for
implementing the tagging technique for MWO data analysis
in authentic maintenance contexts: the annotators had high
levels of agreement, suggesting that tagging by a single ex-
pert or by multiple experts are both feasible approaches. In
addition, we identified potential opportunities for improve-
ment of the tagging technique and tools that implement it.
For example, performing the tagging task in a collaborative
environment supporting real-time feedback could further im-
prove the level of agreement achieved.

Domain knowledge could be an important factor in the level
of agreement reached by multiple taggers. For example, users
with less manufacturing experience may be more likely to tag
concepts as “Unknown” than more experienced users, who
might possess the background to apply a more appropriate
classification, leading to a lower level of agreement between
multiple taggers. Future work can further tease apart the ef-
fects of prior domain or tagging experience on agreement and
investigate workflows that explicitly utilize differing levels of
experience, such as those in which more experienced users
train novices.

It is also possible that characteristics of the MWO dataset,
such as complexity or domain, could impact the agreement
among taggers. Future work could further investigate these
factors’ effect on agreement and whether our results general-
ize to other datasets.

Finally, the information that is provided from the MWO tag-
ging needs to be incorporated into the maintenance decision
workflows. This analysis is ongoing and will be further stud-
ied in future work.
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